$$
\vec{\varepsilon}=\hat{r}+\vec{L} \times \vec{v}=\text { const },
$$

where \vec{L} is a constant vector parallel to the angular momentum. Let us write this, using the requirements of the problem, in terms of complex numbers:

$$
\varepsilon=\mathrm{e}^{\mathrm{i} \psi}+z=\mathrm{e}^{\mathrm{i} \phi}+2 z \mathrm{i} .
$$

If we eliminate from here z, we obtain

$$
\varepsilon-\mathrm{e}^{\mathrm{i} \psi}=\left(\varepsilon-\mathrm{e}^{\mathrm{i} \phi}\right) / 2 \mathrm{i}
$$

so that

$$
\varepsilon=\left(\mathrm{e}^{\mathrm{i} \psi \psi}-\frac{\mathrm{e}^{\mathrm{i} \phi}}{2 \mathrm{i}}\right)\left(1-\frac{1}{2 \mathrm{i}}\right)^{-1}=\mathrm{e}^{\mathrm{i} \psi \psi}\left(1-\frac{\mathrm{e}^{\mathrm{i} \varphi}}{2}\right)\left(1-\frac{1}{2 \mathrm{i}}\right)^{-1},
$$

where $\varphi=\phi-\psi$. Here ψ can be always chosen so that RHS is real and the modulus of RHS is minimized with $\varphi=0$. So minimal $\varepsilon=\frac{1}{2} \cdot\left(\frac{4}{5}\right)^{1 / 2}=1 / \sqrt{5}$.

