Problem 2, Physics Cup 2021

Absur Khan Siam

1 Problem Statemet

At two different points in its orbit, a comet has velocities \vec{v}_{1} and \vec{v}_{2}. If:
(i) \vec{v}_{1} and \vec{v}_{2} are orthogonal and
(ii) $\left|\vec{v}_{1}\right|=2\left|\vec{v}_{2}\right|$, what is the smallest possible eccentricity of the orbit?

2 Solution

Figure 1: The Orbit
The orbit can not be a circle (eccentricity $=0$) as the speed is constant in that case. The next candidate is an ellipse, which has an eccentricity $e \in(0,1)$. The angular momentum remains constant for a central force. Hence

$$
\vec{r}_{1} \times \vec{v}_{1}=\vec{r}_{2} \times \vec{v}_{2} \Rightarrow d_{1} v_{1}=d_{2} v_{2}
$$

where d_{1} and d_{2} are the respective perpendicular distances of the velocity vector lines from the focus (Fig. 1). Now, the condition $\left|\vec{v}_{1}\right|=2\left|\vec{v}_{2}\right|$ yields us

$$
d_{2}=2 d_{1}
$$

Therefore, the problem reduces to finding the smallest possible eccentricity of an ellipse with a pair of orthogonal tangents such that $d_{2}=2 d_{1}$.

Lemma 2.1. The locus of the intersection point of a pair of orthogonal tangents to an ellipse is a circle.

Proof. The equation of an ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. We take a tangent to the ellipse from the point (h, k) with slope m. Then $\left(h^{2}-a^{2}\right) m^{2}-2 h k m+\left(k^{2}-b^{2}\right)=0$. This has two solutions m_{1} and m_{2} with $m_{1} m_{2}=\frac{k^{2}-b^{2}}{h^{2}-a^{2}}$, and the two tangents are perpendicular if $m_{1} m_{2}=-1$. Combining both conditions, we get $h^{2}+k^{2}=$ $a^{2}+b^{2}$, meaning that the locus is a circle of radius $\sqrt{a^{2}+b^{2}}$.

$$
x^{2}+y^{2}=a^{2}+b^{2}
$$

And its center coincides with the center of the ellipse $(0,0)$.

Figure 2: Ellipse with the locus circle
We now claim that the largest value of $\frac{d_{2}}{d_{1}}$ occurs when the intersection point of the pair of orthogonal tangents is at the co-vertex.
According to Fig. 2, $\tan \beta=\tan \angle F B D=\frac{d_{1}}{d_{2}}$. So, in order to maximize $\frac{d_{2}}{d_{1}}$, we
have to minimize $\tan \beta$ or β.
Due to symmetry, we can simply consider the case where B resides in the first quadrant. Also, $\beta=45^{\circ}$ when $B=P$ and $B=R$. Therefore, following the Extreme Value Theorem and the symmetry of the system, we conclude that there must be an extremum of β at $B=Q$
If we follow the evolution of the segment $I J$, we see that it increases (and β decreases) monotonously from $B=P$ to $B=Q$. Thus β can have an extremum only at $B=Q$, and it is a minimum.
WLOG, to make our calculations easy, we assume that $a=1$. We know that $e^{2}=1-\frac{b^{2}}{a^{2}}$, which implies $b^{2}=1-e^{2}$. Now one tangent goes through $\left(0, \sqrt{2-e^{2}}\right)$ and $\left(\sqrt{2-e^{2}}, 0\right)$; another one goes through $\left(0, \sqrt{2-e^{2}}\right)$ and $\left(-\sqrt{2-e^{2}}, 0\right)$. Therefore, the equations of the tangents are

$$
\begin{array}{r}
x+y-\sqrt{2-e^{2}}=0 \\
-x+y-\sqrt{2-e^{2}}=0
\end{array}
$$

With the focus being $(e, 0)$, we calculate $\frac{d_{2}}{d_{1}}$

$$
\left|\frac{-e-\sqrt{2-e^{2}}}{e-\sqrt{2-e^{2}}}\right|=2 \Rightarrow \frac{-e-\sqrt{2-e^{2}}}{e-\sqrt{2-e^{2}}}= \pm 2
$$

which gives one valid solution $e=\frac{1}{\sqrt{5}}$

