Problem 2, Physics Cup 2021

Absur Khan Siam

1 Problem Statemet

At two different points in its orbit, a comet has velocities \vec{v}_1 and \vec{v}_2 . If: (i) \vec{v}_1 and \vec{v}_2 are orthogonal and

(ii) $|\vec{v}_1| = 2 |\vec{v}_2|$, what is the smallest possible eccentricity of the orbit?

2 Solution

Figure 1: The Orbit

The orbit can not be a circle (eccentricity = 0) as the speed is constant in that case. The next candidate is an ellipse, which has an eccentricity $e \in (0, 1)$. The angular momentum remains constant for a central force. Hence

$$\vec{r}_1 \times \vec{v}_1 = \vec{r}_2 \times \vec{v}_2 \Rightarrow d_1 v_1 = d_2 v_2$$

where d_1 and d_2 are the respective perpendicular distances of the velocity vector lines from the focus (Fig. 1). Now, the condition $|\vec{v}_1| = 2 |\vec{v}_2|$ yields us

$$d_2 = 2d_1$$

Therefore, the problem reduces to finding the smallest possible eccentricity of an ellipse with a pair of orthogonal tangents such that $d_2 = 2d_1$.

Lemma 2.1. The locus of the intersection point of a pair of orthogonal tangents to an ellipse is a circle.

Proof. The equation of an ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. We take a tangent to the ellipse from the point (h, k) with slope m. Then $(h^2 - a^2)m^2 - 2hkm + (k^2 - b^2) = 0$. This has two solutions m_1 and m_2 with $m_1m_2 = \frac{k^2-b^2}{h^2-a^2}$, and the two tangents are perpendicular if $m_1m_2 = -1$. Combining both conditions, we get $h^2 + k^2 = a^2 + b^2$, meaning that the locus is a circle of radius $\sqrt{a^2 + b^2}$.

$$x^2 + y^2 = a^2 + b^2$$

And its center coincides with the center of the ellipse (0,0).

Figure 2: Ellipse with the locus circle

We now claim that the largest value of $\frac{d_2}{d_1}$ occurs when the intersection point of the pair of orthogonal tangents is at the co-vertex. According to Fig. 2, $\tan \beta = \tan \angle FBD = \frac{d_1}{d_2}$. So, in order to maximize $\frac{d_2}{d_1}$, we have to minimize $\tan \beta$ or β .

Due to symmetry, we can simply consider the case where B resides in the first quadrant. Also, $\beta = 45^{\circ}$ when B = P and B = R. Therefore, following the Extreme Value Theorem and the symmetry of the system, we conclude that there must be an extremum of β at B = Q

If we follow the evolution of the segment IJ, we see that it increases (and β decreases) monotonously from B = P to B = Q. Thus β can have an extremum only at B = Q, and it is a minimum.

WLOG, to make our calculations easy, we assume that a = 1. We know that $e^2 = 1 - \frac{b^2}{a^2}$, which implies $b^2 = 1 - e^2$. Now one tangent goes through $(0, \sqrt{2 - e^2})$ and $(\sqrt{2 - e^2}, 0)$; another one goes through $(0, \sqrt{2 - e^2})$ and $(-\sqrt{2 - e^2}, 0)$. Therefore, the equations of the tangents are

$$\begin{array}{rcl} x + y - \sqrt{2 - e^2} & = & 0 \\ -x + y - \sqrt{2 - e^2} & = & 0 \end{array}$$

With the focus being (e, 0), we calculate $\frac{d_2}{d_1}$

which gives one

$$\left| \frac{-e - \sqrt{2 - e^2}}{e - \sqrt{2 - e^2}} \right| = 2 \Rightarrow \frac{-e - \sqrt{2 - e^2}}{e - \sqrt{2 - e^2}} = \pm 2$$

valid solution $e = \frac{1}{\sqrt{5}}$