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1 Solution

Let the center of the octagon be O. Number the vertices of the octagon 1, 2, 3,
4, 5, 6, 7, 8 going clockwise. Number the bars 1, 2, 3, 4, 5, 6, 7, 8, where bar
i is between vertices i and i + 1. Define the z axis to be perpendicular to the
plane of the octagon.

First, we find the number of degrees of freedom of the system for small
oscillations. Naturally, we will constrain our system so that it has no net trans-
lational or rotational motion. Consider the vertices of the octagon. The state
of the system is completely determined if we know the positions and velocities
of the vertices. If the vertices are free to move, then they will have 16 degrees
of freedom in total for their positions, and 16 for their velocities (2 for each
vertex). However, we know the distance between consecutive vertices is con-
stant since each bar’s length doesn’t change, so this applies 8 constraints to the
positions and 8 to the velocities. Thus, we have 8 degrees of freedom left for
the positions, and 8 for the velocities. Finally, the system shouldn’t have net
translational motion, which is 2 constraints for both position and velocity, and
it shouldn’t have net rotational motion, which is 1 constraint for both position
and velocity. Thus, we are left with 5 degrees of freedom for position, and 5 for
velocity. In total, the state of the system can be described by 10 (independent)
parameters.

Next, we search for the normal modes of oscillation. Since the system is linear
(this can be verified by simply writing down the force and torque equations for
each bar), once we find the normal modes, we simply superpose them to get the
general solution. The normal modes should be linearly independent, and when
superposing them, each normal mode contributes 2 parameters (amplitude +
phase), so it suffices to find 5 linearly independent normal modes. Once we
do this, given any initial state of the system (which is 10 parameters), we can
determine the amplitude and phase for each normal mode before superposing
them to completely determine the evolution of the system.

The 1st normal mode, call it A, is where all the vertices oscillating radially,
with the odd vertices oscillating at opposite the phase of the even vertices. To
find the angular frequency of oscillation, we note that the state of the system
can be described by the parameters θ and θ̇, where θ is the angular displacement
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of each bar (which are the same, by symmetry). The potential energy stored in
each joint is 1

2k(∆θ)2 where ∆θ is the deviation of the joint angle from 3π
4 . Thus,

since ∆θ = 2θ, the total potential energy of the system is 8 ∗ 1
2k(2θ)2 = 16kθ2.

To find the kinetic energy of bar 1, for example, we note that velocity vectors of
the ends of the bar are pointing along (or opposite of) the radial direction. Thus,
the center of rotation P of bar 1 is the intersection of the line perpendicular to
O1 at 1, and the line perpendicular to O2 at 2. The moment of inertia about P
is 1

12ml
2 + m( l2 tan π

8 )2 by the parallel axis theorem. In addition, the angular

speed is θ̇. Thus, the kinetic energy of the bar is 1
2 ( 1

12ml
2 + m( l2 tan π

8 )2)θ̇2 =
5−3
√
2

12 ml2θ̇2, so the total kinetic energy of the system is 10−6
√
2

3 ml2θ̇2. Finally,

the angular frequency of the system is ω2
A = 24

5−3
√
2

k
ml2 .

The 2nd normal mode, call it B, is where odd bars do not rotate, but oscillate
radially. Note that bar 1 and bar 5 are exactly opposite phase with bar 3 and
bar 7. In this case, we note that the state of the system can be described by the
parameters x and ẋ, where x is the displacement of bar 1. Note that the angular

displacement of bars 2, 4, 6, and 8 have magnitude
√
2x
l . Thus, the potential

energy of the system is 8∗ 1
2k(
√
2x
l )2 = 8k x

2

l2 . Note that bars 1, 3, 5, and 7 move

at the same speed ẋ. Also, bars 2, 4, 6, 8 are rotating with angular speed
√
2ẋ
l

about a center of rotation l
2 away from the center of the bar. Thus, the total

kinetic energy of the system is 4∗ 1
2mẋ

2+4∗ 1
2 ( 1

12ml
2+m( l2 )2)(

√
2ẋ
l )2 = 10

3 mẋ
2.

Finally, the angular frequency of the system is ω2
B = 12

5
k
ml2 .

The 3rd normal mode, call it C, is where even bars do not rotate, but oscillate
radially. Note that bar 2 and bar 6 are exactly opposite phase with bar 4 and
bar 8. This case is equivalent to normal mode B, so the angular frequency is
ω2
C = 12

5
k
ml2 .

The 4th normal mode, call it D, is where bar 1 and bar 5 do not rotate, but
oscillate while keeping the same displacement between each other. Bars 3 and 7
do not move radially, but rotate (in opposite directions) and move tangentially.
In this case, the state of the system can be described by the parameters x and ẋ,
where x is the displacement of bar 1. If bar 1 is displaced upwards by x, then so is
bar 5, while bars 3 and 7 are displaced downwards by x, in order for the system’s
center of mass to remain at O. Note that bars 2, 4, 6, and 8 have no displacement
in the vertical direction. The angular displacement of bars 2, 4, 6, and 8 are thus
2
√
2x
l . The angular displacement of bars 3 and 7 are 4x

l . Thus, the total potential

energy of the system is 4 ∗ 1
2k( 2

√
2x
l )2 + 4 ∗ 1

2k( 2
√
2x
l + 4x

l )2 = (64 + 32
√

2)k x
2

l2 .
The kinetic energies of bars 1 and 5 are 1

2mẋ
2. The centers of bars 2, 4, 6, and

8 are moving at ẋ and rotating with angular speed 2
√
2ẋ
l . Thus, their kinetic

energies are 1
2mẋ

2 + 1
2 ∗

1
12ml

2( 2
√
2ẋ
l )2 = 5

6mẋ
2. Finally, the kinetic energies of

bars 3 and 7 are 1
2mẋ

2 + 1
2 ∗

1
12ml

2( 4ẋ
l )2 = 7

6mẋ
2. In total, the kinetic energy of

the system is 2 ∗ 1
2mẋ

2 + 4 ∗ 5
6mẋ

2 + 2 ∗ 7
6mẋ

2 = 20
3 mẋ

2. Therefore, the angular

frequency of the system is ω2
D = 48+24

√
2

5
k
ml2 .

The 5th normal mode, call it E, is where bar 3 and bar 7 do not rotate,
but oscillate while keeping the same displacement between each other. Bars
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1 and 5 do not move radially, but rotate (in opposite directions) and move
tangentially. This case is equivalent to normal mode D, so the angular frequency

is ω2
E = 48+24

√
2

5
k
ml2 .

These normal modes can be shown to actually work by using symmetry or by
finding explicitly the forces and torques between bars that produce the desired
motion.

Now it remains to show that these 5 normal modes are linearly indepen-
dent. Suppose there exists a superposition of these 5 modes that equals 0. By
inspection, we see that normal mode D makes bars 2 and 6, 3 and 7, 4 and 8
not parallel, while normal mode E makes bars 1 and 5, 2 and 6, 4 and 8 not
parallel. All other normal modes (A, B, and C) preserve the parallelism of all
pairs of opposite bars. Thus, the amplitudes of D and E are 0. To see why the
amplitudes of A, B, and C must also be zero, consider the following argument:
Note that ẑ×v1 = v3 holds for both B and C, so thus it must hold for any linear
combination of B and C. This means it needs to hold for A as well. However,
we know −ẑ × v1 = v3 for A, which means the amplitude of A is 0. Since B
and C are clearly not multiples of each other, we have that their amplitudes are
0. Therefore, all amplitudes are 0, which means A, B, C, D, and E are linearly
independent.

Thus, we have 5 normal modes with 3 distinct natural oscillation frequencies,

namely
√

24
5−3
√
2

k
ml2 ,

√
12
5

k
ml2 , and

√
48+24

√
2

5
k
ml2 . Since the ratios between

these frequencies are irrational, there are no more natural oscillation frequencies
of the system.

Note that 1 linearly independent oscillation mode corresponds to the first
frequency (ωA), 2 to the second (ωB and ωC), and 2 to the third (ωD and ωE).
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