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Since there is no interaction among the electrons, we may consider the motion of each
electron individually. In particular, we only need to consider motion in the z-direction. Since
the magnetic field only affects motion in the xy-plane, we may ignore it.

Throughout this problem, we treat the situation is one-dimensional. (Hence “velocity”
always refers to the z-component of the velocity.)

Consider an electron with speed v0. Typically, v0 ∼
√

kBT/m, meaning that v0 � u and

v0 < vw =
√

2U0/m =
√

200kBT/m. We hope to find its final speed v1 after the shock wave.
This will allow us to derive the final velocity distribution from the initial distribution, from
which the final pressure p1 can be calculated.

We divide the motion of the electron into two stages:

1. Before it gains the required kinetic energy U0 to climb the potential barrier, it bounces
elastically between that barrier z = ut and the wall z = L. Throughout this process,
work done by the potential barrier imparts energy to the electron.

2. Eventually, the electron gains sufficient speed vw to climb up the potential barrier.
From that point on, the electron bounces between the walls z = 0 and z = L. Every
time the electron descends the potential barrier and ascends it, it gains a small amount
of energy since the barrier moves. After the shock wave has traveled through the entire
space between the walls, the speed of the electron will have increased to v1.

1 Bouncing between the potential barrier and the wall

z = L

Consider an electron with speed v bouncing between the potential barrier z = ut and the
wall z = L. It hits the potential barrier with period T = 2(L− x)/v where x = ut. During
each collision, the barrier imparts a momentum of ∆p = 2mv onto the electron. Therefore,
the average force that the barrier exerts onto the electron is

F =
∆p

T
=

mv2

L− x
.

The work done by the barrier increases the kinetic energy of the electron:

F dx = dEk
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mv2

L− x
dx = mv dv

dx

L− x
=

dv

v

− ln(L− x) = ln(v) + C

v =
K

L− x
.

The initial condition v = v0 at x = 0 gives K = Lv0, so

v =
L

L− x
v0.

Eventually, when v reaches vw, the electron’s kinetic energy reaches U0, so it climbs the
potential barrier and enters the second stage with close to zero speed.1

By this point, the potential barrier has moved to z = x0 where

vw =
L

L− x0

v0

x0 =

(
1− v0

vw

)
L. (1)

2 Bouncing between the walls z = 0 and z = L

Consider an electron with speed v (v � u)2 moving in the positive z-direction starting
at z = 0. It reaches the potential barrier at position z = x (x = ut) in time t1 = x/v,
gets accelerated by the potential drop to a speed v′ =

√
v2 + v2w, and travels for a time

t2 = (L − x)/v′ before bouncing off the wall at z = L. The electron then takes time t2 to
meet the potential barrier again, climbs the potential barrier with its speed reduced back to
v, and takes time t1 to arrive back at the wall z = 0 before starting a new cycle. This entire
process has a period of

T = 2(t1 + t2) = 2

(
x

v
+

L− x

v′

)
.

Each time the electron passes the boundary of the potential barrier, it gains a momentum
in the positive z-direction equal to m(v′− v). Therefore, in one period, the potential barrier
has imparted an impulse of

∆p = 2m(v′ − v).

Thus, the average force that the potential barrier exerts on the electron is

F =
∆p

T
=

m(v′ − v)
x
v

+ L−x
v′

.

1In particular, the speed of the particle increases by 2u every time it collides with the potential barrier,
so during stage 1 we always have v = v0 + 2ku for some non-negative integer k. So, the first time v
reaches/exceeds vw, we typically have v ≈ vw + u. After climbing the potential barrier, the speed becomes
v′ =

√
(vw + u)2 − v2w ≈

√
2vwu� u.

2Justified by footnote 1.
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The work that the potential barrier does on the electron translates to an increase in its
kinetic energy:

F dx = dEk

m(v′ − v)
x
v

+ L−x
v′

dx = mv dv

dv

dx
=

v′ − v

x + v
v′

(L− x)
. (2)

This differential equation is difficult to solve exactly, so we’ll make approximations. As-
sume v ≤ v0, which is justified by our final solution (3). Therefore, approximating v′ =√

v2 + v2w ≈ vw causes a relative error of ∼ (v/vw)2 ≤ (v0/vw)2 ∼ 1/200 � 1. Thus, the
numerator of the RHS of (2) can be well-approximated as vw − v. We approximate the
denominator x + v

v′
(L− x) ≈ x, which causes a relative error on the order of

v

v′
L− x

x
≤ v0

vw

L− x0

x0

≈ v0
vw

L− x0

L
=

(
v0
vw

)2

� 1,

where we’ve used (1). Hence, (2) becomes

dv

dx
≈ vw − v

x

with high accuracy.3 We now solve the differential equation:

− dv

vw − v
= −dx

x

ln(vw − v) = − ln(x) + C

vw − v =
K

x

v = vw −
K

x
.

We have the initial condition v = 0 at x = x0 =
(

1− v0
vw

)
L, which gives K = (vw − v0)L.

Therefore,

v = vw −
L

x
(vw − v0). (3)

When the shock wave reaches the wall at z = L, we have x = L. Substituting this into (3)
gives the final speed of the electron

v1 = v0.

3In relative terms, the numerator is underestimated by about v2/2v2w, whose average is v20/6v2w since
v changes approximately linearly from 0 to v0 as x changes from x0 to L (see (3)). The denominator is
underestimated by about v(v0 − v)/v2w, whose average is also v20/6v2w. dv/dx ≈ vw/L is approximately
constant, so these two underestimations on average cancel each other out as we integrate with respect to x.
Therefore, in the end, the relative error in v1 and also p1 is at most ∼ (v0/vw)3 ∼ 10−3.
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3 The final pressure

Since the speed of every electron remains unchanged after the shock wave, the velocity
distribution of the electrons remains unchanged. Therefore, the final pressure of the electron
gas is equal to its initial pressure:

p1 = p0.
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