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A thin long wire is made of a material that undergoes a phase transition so that its resistivity takes one
of the two values, ρ1 is its temperature is smaller than Tc, and ρ2 = 2ρ1 if the temperature is larger than Tc.

Assume the following:

• The heat flux per unit length of the wire to the ambient medium is W = α (T − T0) where α is a
constant, T denotes the temperature of the wire, and T0 is the ambient temperature (T0 < Tc);

• The wire is so thin that the thermal flux along the wire can be almost everywhere neglected, and the
characteristic thermalization time is much shorter than the time during which the voltage is changed;

• While the coefficient α and cross-sectional area A are almost constant along the wire, due to imperfec-
tions, there are tiny variations;

• The length of the wire L ≫
√
A.

The voltage V applied to the ends of the wire is increased very slowly at a constant rate (i.e. linearly in time),
from zero until the whole wire has undergone a phase transition, and then reduced back to zero, at the same
constant rate. Sketch how the total power P dissipated in the wire depends on time t.

Your sketch should show power and voltage values at any point where either P or its time derivative is
discontinuous, expressed in terms of P0 = αL (Tc − T0) and V0 = L

√
αρ1(Tc−T0)

A . The solution is considered
to be correct only if all these points have correct values, and all segments of the graph are qualitatively
correct (e.g. a convex curve should not be drawn as a straight line).

1 Step By Step
1.1 Two Temperatures
As there is almost no heat current through the wire, almost every wire infinitesimal is in thermal equilibrium
with the environment. Because the current is constant through the sample, that means all the ρ2 regimes
have the same temperature – same I and same resistivity mean same Joule heating – hence same temperature.
Same is true for all ρ1 regimes of course.

Note that these temperatures are different – parts with higher temperature have higher resistivity, hence
more heat is dissipated in them. Following Matthew effect: “For him who has will more be given, and he
will have abundance; but from him who has not, even what he has will be taken away.” (Matthew 13:12).
The wire will have two temperatures, Th for ρ2 and Tl for ρ1.

1.2 First Temperatures Condition
Suppose a steady state occurs where a segment of length ℓ is in the high temperature, and the rest (L − ℓ)
is in the low temperature.

The overall resistance is ρ2ℓ
A + ρ1(L−ℓ)

A = ρ1L
A + ρ1

A ℓ ≡ R1 + rℓ = R1

(
1 + ℓ

L

)
and the current is V

R1+rℓ . We
will use R1, r from now on.

1



A unit length dL in phase 1 will experience voltage of dV = I ρ1dL
A = V

R1(1+ ℓ
L )

R1dL
L = V dL

L+ℓ , hence

omits heat of IdV = V dL
L+ℓ

V

R(1+ ℓ
L )

= V 2

R
LdL

(L+ℓ)2
. Was it in phase 2, the voltage was I 2ρ1dL

A = 2V dL
L+ℓ . Heat

would’ve been 2V 2LdL
R1(L+ℓ)2

. From this we directly see that Th − T0 = 2V 2L
αR1(L+ℓ)2

while Tl − T0 = V 2L
αR1(L+ℓ)2

. We
note that (Th − T0) = 2 (Tl − T0).

1.3 Second Temperatures Condition
Look on a “marginal” piece of wire dL, the one that isn’t sure wether it should be in ρ1 or in ρ2. Such
infinitesimal piece must be in temperature Tc, with neighbors in both phases; hence, for the heat current to
work and not accumulate, we get our second condition – Th − Tc = Tc − Th.

Combined with the previous condition, we can extract the temperatures – independently of ℓ! We have
Tl = T0 +

2
3 (Tc − T0) =

2
3Tc +

1
3T0 and Th = T0 +

4
3 (Tc − T0) =

4
3Tc − 1

3T0.

1.4 Finding ℓ

We now find the single allowed steady state. Note that larger ℓ leads to higher outflux (more hot part)
and lower influx (higher resistance, lower heat emission), hence there is a single solution given V . We can
actually just extract it from the expressions of Th and Tl from the second section. V 2L

αR1(L+ℓ)2
= 2

3 (Tc − T0)

gives L+ℓ =
√

3
2

L
αR1(Tc−T0)

V . We get ℓ that’s linear in V ! The minimal value is Vmin =
√

2
3αR1 (Tc − T0)L,

and the maximal is Vmax =
√

8
3αR1 (Tc − T0)L.

2 Overall Result
There is one more complication to consider. The influx-outflux argument gives only one solution in which
there is an equilibrium of two phases. Carefully heating can lead us to a “metastable” state of only R1

all the way up to Tc. This will happen in voltage V0 ≡
√
αR1 (Tc − T0)L. The wire will heat in rate of

V 2
0

R1
= α (Tc − T0)L = P0, of course. Then we will “jump” to a state with finite ℓ, hence with a qualitatively

lower heat emission – L+ ℓ =
√

3
2L, hence ℓ =

√
3
2 −1. The emission is α (Tl − T0) (L− ℓ)+α (Th − T0) ℓ =(

1− ℓ
L

)
2
3P0 +

ℓ
L

4
3P0 = 2

3

(
1 + ℓ

L

)
P0 =

√
2
3P0. We will go all the way up to Vmax, and then will find ourself

in a state of a single, high temperature – now with P = 4
3P0.

Cooling, We will go down to
√
2V0, heating in 2V 2

0

R2
= P0, and then experience another jump – L+ℓ =

√
3L,

hence we’ll suddenly get P = 2√
3
P0, as a large portion suddenly became more conducting. This will cool

down all the way to the single low temperature with 2
3P0, and then of course to zero.

In the intermediate state we note that the heat emission is α (L+ ℓ) (Tl − T0) = 2
3

(
1 + ℓ

L

)
P0. But as

L+ ℓ is linear in V , we get that P is linear in V as well – P = 2
3
L+ℓ
L P0 =

√
2
3

√
1

αR1L(Tc−T0)
V P0 =

√
2
3

V
V0
P0

A full description, therefore:

• Simple voltage raising – P ∝ V 2 up to V = V0 and P = P0.

• A discrete jump to P =
√

2
3P0.

• A linear rise up to P = 4
3P0, V =

√
8
3V0.

• [A possible quadratic rise further, but the cooling stops]

• A quadratic decay, P ∝ V 2 down to T = Tc with V =
√
2V0 and P = P0.
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