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1 Interpretation and basic idea of the solution

We assume that the voltage is being increased quasi-statically. This will guarantee that thermal
equilibrium has been achieved at all values of voltage applied. Initially let’s assume that the entire
wire was at room temperature T0. Neglecting heat conduction along the wire, the wire gets heated
to just below Tc at voltage V = V0 (say).
The equilibrium condition is:

AV0
2

ρ1L
− αL(Tc − T0) = 0

⇒ V = V0 = L
√
αρ1(Tc − T0)/A

At this voltage, power generated by wire P0 is,

P0 =
AV0

2

ρ1L
= αL(Tc − T0)

Before reaching this voltage, the total power generated by the wire (equal to the power dissipated
as heat) be P .

P =
V 2

R
=

AV 2

ρ1L
= P0

(
V

V0

)2

Since, there are manufacturing defects in the cross section of the wire, there would be points where
the cross section is less than A, and there would also be a minimum value. At such points, phase
transitions will begin as temperature locally exceeds Tc.
Let f fraction of the length has undergone phase transition to ρ2. The resistance of the whole wire
will be R.

R =
fρ2L

A
+

(1− f)ρ1L

A
=

(1 + f)ρ1L

A

Power generated by wire per unit length of wire (at a point with resistivity ρ) be p

p =
I2ρ

A
=

ρAV 2

(1 + f)2ρ21L
2

Now to calculate what is the power output of the wire during the transition process, we need to know
what is the fraction f at any voltage applied. That in turn depends on the temperature distribution
of the wire (how much part of wire is above Tc).
We will make use of the general 1-D heat conduction equation for this purpose.

2 Finding temperature distribution of the wire

At any point x on the wire, we can write:

k
∂2T

∂x2
+ ˙egen − ˙erem = dc

∂T

∂t
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Where, k is thermal conductivity; d is density; c is specific heat capacity; ˙egen is power generated
per unit length. ˙erem is heat removed per unit time per unit length.
As we are working with equilibrium condition, temperature won’t be time dependent. So, for this
problem:

k
d2T

dx2
+

ρAV 2

(1 + f)2ρ21L
2
− α(T − T0) = 0 (1)

We do note that this value of thermal conductivity is so small that it can be neglected almost
everywhere. There will be a finite number of discrete points (a set of measure zero) where this can’t
be neglected, as we shall see.

2.1 In an interior point, away from phase boundaries

We approximate k to be 0 since heat current is negligible. Therefore we use equation (1) with k set
to 0.

α(Tc − T0) =
ρAV 2

(1 + f)2ρ21L
2

⇒ T = T0 +
ρAV 2

(1 + f)2αρ21L
2

Thus, the temperature at any interior point within a phase of resistivity ρ is constant and are:
For phase ρ1

T = T0 +
AV 2

(1 + f)2αρ1L2

For phase ρ2

T = T0 +
2AV 2

(1 + f)2αρ1L2

2.2 At a phase boundary

There will be a finite number of such phase boundaries since nucleation will begin only at finite
points (points where phase change will begin). At such boundaries we can’t ignore the conduction
term in our equation (1) because there exists a finite temperature difference across a very short
distance, i.e. near infinite thermal gradient. The plan is to do our calculation by assuming a finite
k and then taking a limit to 0.
Let such a phase boundary be as shown in the figure:

The transition from one phase to other is occurring at the phase boundary, and this transition
happens at Tc. Thus, the temperature of the wire at the boundary x = 0, must be Tc.
For, x > 0:

k
d2T

dx2
+ p− α(T − T0) = 0

Let T ′ = T − T0, we solve this differential equation to get:

T = T ′ + T0 = T0 +
p

α
+ Tae

−λx + Tbe
λx
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λ =

√
α

k

Putting boundary condition, that T is almost constant at interior points, we can say Tb must be
zero (for finite temperatures). Also we have argued that at x = 0, T = Tc, therefore,

Tc − T0 =
p

α
+ Ta

Now, for x < 0 we have:

k
d2T

dx2
+ 2p− α(T − T0) = 0

We solve to get,

T = T ′ + T0 = T0 +
2p

α
+ Tde

−λx + Tbe
λx

λ =

√
α

k

Td must be zero (for finite temperatures at x < 0). Also since at x = 0, T = Tc,

Tc − T0 =
2p

α
+ Tb

We have another physical condition to exploit: that is the outward heat flux from the ρ2
phase along the conductor must be equal to the heat flux into ρ1 phase.. In other words,
the gradient of temperature on both side of zero must be continuous.

Figure 1: A plot of this temperature distribution at phase boundary. In this limit k → 0, this will
limit the transition zone to a point of measure 0

For x < 0, dT
dx = λTb and for x > 0, dT

dx = −λTa. Since both of them are equal we have
Ta + Tb = 0.
Using these boundary relations, we can eliminate Ta and Tb to get,

Tc − T0 =
3

2
p =

3

2

AV 2

(1 + f)2αρ1L2

Simplifying this result to have 1 + f separated,

1 + f =

√
3

2

V

V0
(2)
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3 Plot of the heating process from ρ1 to ρ2

We see that as soon as the phase change begins, a fraction f =
√
1.5−1 ≈ 0.225 of the wire converts

instantaneously, as can be seen from equation (2).
Once this process has started, the subsequent power dissipation is to be calculated:

P =
V 2

R
=

AV 2

(1 + f)ρ1L

⇒ P =

√
2

3

AV 2
0

ρ1L

V

V0
=

√
2

3
P0

V

V0

This will continue till the entire wire has converted to phase ρ2. After complete transformation, the
power dissipated is given by:

P =
V 2

R
=

AV 2

ρ2L
=

1

2
P0

(
V

V0

)2

To summarise the entire graph of heating process is shown with all the critical points marked.

Figure 2: Graph of power dissipation versus voltage, during heating

The points A, B and C are (in units of V0 and P0): A:(1, 1), B:(1,
√

2
3 ), C:(2

√
2
3 ,

4
3 ).

The red curve is P = P0

(
V
V0

)2

. The black straight line is P =
√

2
3P0

V
V0
. And the purple curve is

P = 1
2P0

(
V
V0

)2
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4 Plot of the cooling process from ρ2 to ρ1

Now we try to determine the plot when the wire completely in phase ρ2 is cooled down to phase ρ1.
We again assume that initially the wire had a uniform temperature TH > Tc.
No phase change will happen until the entire wire is just above Tc. After that, at those points where
cross-section is more than A, i.e. resistance is a bit less, the phase change will begin. The voltage
at which this will happen is V = V1, say.

V1 = L
√
αρ2(Tc − T0)/A =

√
2V0

Once the phase transition begins, the fraction of phase ρ2 is given by equation (2).

1 + f =

√
3

2

V

V0

At the very beginning, phase ρ2 is instantaneously reduced to f = 0.732, after that the transforma-

tion continues till f = 0, or V =
√

2
3V0

The relation between power and voltage during phase transition will be same as what we have
calculated in the heating part.

P =

√
2

3
P0

V

V0

After the transformation is complete, the power versus voltage relation is also known.

P = P0

(
V

V0

)2

This has been summarised in this attached cooling curve.

Figure 3: Graph of power dissipation versus voltage, during cooling

The points D, E and F are (in units of V0 and P0): A:
(√

2
3 ,

2
3

)
, E:

(√
2, 1

)
, F:

(√
2, 2√

3

)
.

The red curve is P = P0

(
V
V0

)2

. The black straight line is P =
√

2
3P0

V
V0
. And the purple curve is

P = 1
2P0

(
V
V0

)2
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