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1 Introduction
At first the temperature of the wire is almost constant along it but it will not remain so during the whole process.
So, we introduce T ≡ T (l, t) and T (l, 0) = T0 for all l; l being the coordinate of a point on the wire measured from
its left end where we define the potential v to be 0: v ≡ v(l, t), v(0, t) = 0 and v(L, t) = V (t). We disregard the
dimensions of the wire in directions orthogonal to l because L ≫

√
A. Also as the resistivity can take two values at

any point along the wire and it can change at any given moment we define ρ ≡ ρ(l, t) and ρ(l, 0) = ρ1.
Because the voltage V (t) applied changes very slowly with time we neglect any effects of the inductance of the wire
and take it to be electrically neutral throughout at all times. In essence we take the current I through the wire to
be constant along it (I(l) = I) and equal to the value it would have in equilibrium at constant V and ρ(l) in time.
We can differentiate between five "phases" in the behavior of the system. At first the whole wire has resistivity ρ1
(Phase A). In the second phase part of the wire changes its phase so the resistivity is no longer constant along the
wire (Phase B). In phase C the whole wire is in its second phase. In the third phase (D) part of the wire reverts to
its initial phase. In the fourth phase (E) the whole wire has resistivity ρ1 and lasts until the voltage drops to zero.

2 Phase A
We observe a very short segment of the wire dl which has a voltage dv between its two ends. Thus the current
through it is

I =
dv

ρdl
A

=
dvA

dlρ1
(1)

we have ∫ L

0

Idl =

∫ V

0

A

ρ1
dv (2)

IL =
A

ρ1
V (3)

I(t) =
V (t)A

ρ1L
(4)

The power of Joule heating in this short segment of wire, dPJ , is from eq. 1 and 4

dPJ = Idv = I
dv

dl
dl =

I2ρ1
A

dl =
V 2A

ρ1L2
dl (5)

The heat loss to the environment per unit time is

dPL = α(T − T0)dl (6)

Since the change in voltage is very slow in relation to thermalization time, we may take

dPL = dPJ (7)

α(T − T0)dl =
V 2A

ρ1L2
dl (8)

T = T0 +
V 2A

αρ1L2
≡ T0 + T (V ) (9)
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So we have found the temperature of the wire (essentially constant along it for now) in relation to the voltage. This
phase continues until T = Tc. The power emitted to the environment during this phase by the whole wire is

PL =

∫ L

0

dPL =

∫ L

0

α(T − T0)dl = αL(T − T0) (10)

But also

PL =

∫ L

0

dPL =

∫ L

0

dPJ =

∫ L

0

V 2A

ρ1L2
dl =

V 2A

ρ1L
. (11)

Thus PL ∝ t2 because V grows linearly and at T = Tc we have PL = αL(Tc − T0) = P0. From eq. 9 it is clear that
the voltage at that point will be V = L

√
αρ1(Tc − T0)/A = V0.

3 Phase B
Although in the last section we took all the variables to be essentially constant along the wire, since there are small
variations in the cross section A and the "constant" α along the wire, there will be small variations in rates of
Joule heating (eq. 5) and heat loss to the environment (eq. 6) and thus the temperature (eq. 9) along the wire.
That means that some points will reach temperature Tc slightly before others and will therefore change phase first.
These points become the kernels of expanding regions of wire which have resistivity ρ2 = 2ρ1. Let’s denote with ξ
the total length of wire which is in the second phase. The total resistance of the wire may be calculated as

R = ρ2
ξ

A
+ ρ1

L− ξ

A
=

ρ1
A
(2ξ + L− ξ) =

ρ1L

A

(
1 +

ξ

L

)
(12)

The current flowing through the wire must then be

I =
V

R
=

V A

ρ1L

(
1 +

ξ

L

)−1

(13)

To calculate the power of Joule heating of a short segment of wire (which can be taken to be in one phase in its
entirety) we first calculate (from eq. 1 and 13)

dv

dl
=

Iρ

A
=

ρV

ρ1L

(
1 +

ξ

L

)−1

(14)(
dv

dl

)
1

=
Iρ

A
=

V

L

(
1 +

ξ

L

)−1

(15)(
dv

dl

)
2

=
Iρ

A
=

2V

L

(
1 +

ξ

L

)−1

(16)

where we denote with subscript 1 the phase with ρ = ρ1 and with subscript 2 the phase with ρ = ρ2.
The Joule heating:

dPJ = Idv =
V A

ρ1L

(
1 +

ξ

L

)−1

· ρV

ρ1L

(
1 +

ξ

L

)−1

dl (17)

dPJ =
ρV 2A

ρ21L
2

(
1 +

ξ

L

)−2

dl (18)

(dPJ)1 =
V 2A

ρ1L2

(
1 +

ξ

L

)−2

dl (19)

(dPJ)2 =
2V 2A

ρ1L2

(
1 +

ξ

L

)−2

dl (20)
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Again we use the fact that thermalization is really quick which also means that power spent on it is really small.
So at almost all points we have

dPJ = dPL (21)

ρV 2A

ρ21L
2

(
1 +

ξ

L

)−2

dl = α(T − T0)dl (22)

T = T0 +
ρV 2A

αρ21L
2

(
1 +

ξ

L

)−2

= T0 +
ρ

ρ1
T (V )

(
1 +

ξ

L

)−2

(23)

T1 = T0 + T (V )

(
1 +

ξ

L

)−2

(24)

T2 = T0 + 2T (V )

(
1 +

ξ

L

)−2

(25)

Now, at V = V0 and while ξ/L ≪ 1 because T (V0) = Tc − T0 we have T1 = Tc and T2 = T0 + 2(Tc − T0). Meaning
that at first most of the wire stays at Tc but the points which undergo the phase transition first heat up rapidly
to 2Tc − T0. However at points which border the regions of wire whose phase differs there appears a very large
temperature gradient and inevitably some heat flow develops from the regions of phase 2 to phase 1. But since it is
stated that this heat flow along the wire can be almost everywhere neglected we consider it to only be appreciable
at the stated points and that it doesn’t have an impact on the temperature distribution elsewhere along the wire,
i.e. the regions in phase 2 have essentially the same temperature T2 throughout and the regions in phase 1 the same
temperature T1 throughout.
Although we approximate that the heat flux along the wire is negligible except at the points bordering the regions
of different resistivity to facilitate a simpler function of temperature along the wire (which makes the calculations
of heat loss to the environment much easier), the temperature cannot in reality have discrete jumps between
the "equilibrium" temperatures of the two phases. In reality, for a certain voltage (taken to be constant), a
quasiequilibrium forms such that there is a very sharp but continuous temperature transition between the two
phases.
Now let’s investigate one such point bordering two neighboring regions of different phases. Without loss of generality
let the region of resistivity ρ1 be to the left of the origin (x < 0) of a coordinate system whose x-axis is aligned
with the wire and let the region of resistivity ρ2 be to the right of the origin (x > 0). Relatively speaking, far to
the right of the origin the temperature must tend to T2, the equilibrium temperature of the second phase, and far
to the left it tends to T1, the equilibrium temperature of the first phase. At the origin the temperature is Tc almost
by definition because if it were higher then there would be points of phase two to the left of the origin or points
in phase one to the right of it. This follows because T is obviously a continuous monotonically increasing function
(since T1 < Tc < T2).
We write down the equation of net power influx for a short segment of the wire, dx, while taking into account heat
flux along the wire. Initially we presume that a quasiequilibrium is reached such that T (l) is constant in time so
that the net influx of power must be zero.

0 =
nV 2A

ρ1(L+ ξ)2
dx− α(T − T0)dx+

(
kA

dT

dx

∣∣∣∣
x+dx

− kA
dT

dx

∣∣∣∣
x

)
(26)

Where the first term corresponds to Joule heating internal to the segment, the second term to heat loss to the
environment and the third and fourth terms to heat flux into the segment from parts of the wire to the right and
to the left of the segment respectively. The thermal conductivity is k and we designate if the segment is in phase 1
or 2 with n (n = ρ

ρ1
). This equation is equivalent to

0 =
nV 2A

ρ1(L+ ξ)2
− α(T − T0) + kA

d2T

dx2

0 = kAT ′′ − αT +

(
αT0 +

nV 2A

ρ1(L+ ξ)2

)
0 =

1

ω2
T ′′ − T + Tn

(27)
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Figure 1: Temperature distribution around a border point

where ω =
√

α
kA . This is a standard second-order linear ODE which can be easily solved for the initial conditions

lim
x→−∞

T = T1 (28)

T (0) = Tc (29)

for n = 1 and

lim
x→+∞

T = T2 (30)

T (0) = Tc (31)

for n = 2. The solution is
T = (Tc − T1)e

ωx + T1 (32)

for x ≤ 0 (n = 1) and
T = (Tc − T2)e

−ωx + T2 (33)

for x ≥ 0 (n = 2).
From this we can calculate the derivative of the temperature at x = 0:

(T ′(0))1 = (Tc − T1)ω (34)
(T ′(0))2 = (T2 − Tc)ω (35)

In general this means that T ′ is discontinuous at 0. But that would be in contradiction with the assumption of
equilibrium. If there is a discontinuity in T ′ then T ′′ diverges at that point, meaning that there is certainly net
heat flow to (or from) this point1 as heat influx is proportional to T ′′. So equilibrium can only be achieved if

Tc − T1 = T2 − Tc (36)

holds. Moreover, this equilibrium is stable.
If we have T2−Tc > Tc−T1 then for a short segment of wire containing x = 0, dx, we can write down the expression
for net power influx for this segment:

nV 2A

ρ1(L+ ξ)2
dx− α(Tc − T0)dx+ kA ((T ′(0))2 − (T ′(0))1) = kA ((T ′(0))2 − (T ′(0))1) > 0 (37)

There is a finite positive influx of power into this infinitesimal segment of wire2. This means that this segment is
going to change to phase 2 and then continue to heat up as the new point bordering the two phases "moves" to the
left of the origin. The fraction of wire in phase 2 increases (ξ increases) thereby decreasing T2 and T1 (eq.24 and
25) but T2 decreases at faster rate with the increase of ξ than T1 so as the border point continues to "move" to the
left, eventually we’ll have T2 −Tc = Tc −T1 and equilibrium will be reached. The opposite but essentially the same

1More precisely, from the infinitesimal segment of wire containing this point
2This presents no issue because this power influx will only be present for an infinitesimal amount of time
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happens if initially T2 − Tc < Tc − T1.
The rate at which the border point moves depends on the thermal conductivity of the wire as well as the latent
heat of the phase transition but the assumption is that thermalization happens very fast in comparison to the rate
of change of the voltage so we take it to be essentially instantaneous.
Now let’s calculate the total power emitted to the environment at any point in time:

PL =

∫
wire

dPL

=

∫
wire

dPJ =

∫
1

dPJ +

∫
2

dPJ

=

∫
1

V 2A

ρ1L2

(
1 +

ξ

L

)−2

dl +

∫
2

2V 2A

ρ1L2

(
1 +

ξ

L

)−2

dl

=
V 2A

ρ1L2

(
1 +

ξ

L

)−2(∫
1

dl + 2

∫
2

dl

)
=

V 2A

ρ1L2

(
1 +

ξ

L

)−2(∫
wire

dl +

∫
2

dl

)
=

V 2A

ρ1L2

(
1 +

ξ

L

)−2

(L+ ξ)

=
V 2A

ρ1(L+ ξ)

(38)

From the condition of eq.36 we calculate plugging in eq.24 and 25

L+ ξ = L

√
3T (V )

2(Tc − T0)
=

√
3

2

LV

V0
(39)

Then from eq.38 and eq.39

PL =

√
2

3

V V0A

ρ1L
(40)

At the begining of phase B when V = V0 from eq.39 and 40 we have L+ξ =
√

3/2L and PL =
√
2/3P0. Afterwards,

PL increases linearly with V and therefore with time according to eq.40. This continues until ξ increases to ξ = L
at V =

√
8/3V0 (eq.39). At that point PL = 4/3P0.

4 Phase C
The whole wire is now in phase 2 and has temperature T2 = T0 +

4
3T (V0) which is larger than Tc. From eq.38 we

know that the emitted power equals (ξ = L)

PL =
V 2A

2ρ1L
(41)

as long as the entire wire is in phase 2. Therefore, emitted power starts to decrease and its dependence on time
represented in the graph will be a convex curve. T2 gradually decreases until it is equal to T2 = Tc which happens
when V =

√
2V0 (from eq.25). At this point PL = P0.

5 Phase D
Again, because of small variations in A and α, some points will reach Tc slightly before others, will change back to
phase 1 and quickly cool down to T1. The same equilibrium asserts itself as in phase B as we have parts of wire in
phase 1 and parts in phase 2. Meaning that eq.39 and eq.40 hold again. From eq.39 we have that L + ξ =

√
3L

and from eq.40 we have PL = 2/
√
3P0 at the start of this phase (when V =

√
2V0). As the voltage continues to

decrease, the emitted power continues to decrease linearly (eq.40) and ξ decreases steadily as well until the entire
wire has changed back to phase 1 (when ξ = 0). This happens when V =

√
2/3V0 according to eq.39 and the power

emitted to the environment at that point is PL = 2/3P0 according to eq.40.
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6 Phase E
The wire, being in its entirety in phase 1, behaves again according to eq. 11. At the start of this phase we have
PL = 2/3P0 from plugging V =

√
2/3V0 in eq.11. Also, it is clear that PL will decrease convexly with voltage and

time until it is zero.

Figure 2: Power emitted to the environment vs. time
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