Filip Baciak

Problem No 4

Let us denote the velocity obtained after acceleration with the proper acceleration g after the proper time τ as V. Let the Lorentz factor associated with it be denoted as $\gamma_{0}=\frac{1}{\sqrt{1-\frac{V^{2}}{c^{2}}}}$. Let us choose the reference frames A, B, C, D and four-velocities u, v, w, q such as stated in the third Hint. Then we can easly find some of the values of the four-velocities in some reference frames. Namely, by definition (we will write only three components, as the z-component is always zero):

$$
u^{A}=\left[\begin{array}{l}
c \\
0 \\
0
\end{array}\right], \quad v^{B}=\left[\begin{array}{l}
c \\
0 \\
0
\end{array}\right], \quad w^{C}=\left[\begin{array}{l}
c \\
0 \\
0
\end{array}\right], q^{D}=\left[\begin{array}{l}
c \\
0 \\
0
\end{array}\right]
$$

Additionally, using the previously introduced notation:

$$
v^{A}=\left[\begin{array}{c}
\gamma_{0} c \\
\gamma_{0} V \\
0
\end{array}\right], \quad w^{B}=\left[\begin{array}{c}
\gamma_{0} c \\
0 \\
\gamma_{0} V
\end{array}\right]
$$

By symmetry - or more carefully, by equating $u^{A} v^{A}=u^{B} v^{B}$ and $v^{B} w^{B}=v^{C} w^{C}$ - we easly obtain:

$$
u^{B}=\left[\begin{array}{c}
\gamma_{0} c \\
-\gamma_{0} V \\
0
\end{array}\right], v^{C}=\left[\begin{array}{c}
\gamma_{0} c \\
0 \\
-\gamma_{0} V
\end{array}\right] .
$$

This can also be obtained from the simple formula for relativistic velocity addition in 1 dimension. Such straightforward symmetry does not occur in the general case. We want to find the values of w^{A} and u^{C}. It can easily be done, using four-vector invariants. Namely:

$$
\begin{gathered}
w^{A} u^{A}=w^{B} u^{B} \Longrightarrow w_{t}^{A} c=\gamma_{0}^{2} c^{2} \Longrightarrow w_{t}^{A}=\gamma_{0}^{2} c \\
w^{A} v^{A}=w^{B} v^{B} \Longrightarrow \gamma_{0}^{3} c^{2}-\gamma_{0} V w_{x}^{A}=\gamma_{0} c^{2} \Longrightarrow w_{x}^{A}=\gamma_{0}^{2} V \\
w^{A} w^{A}=w^{C} w^{C} \Longrightarrow \gamma_{0}^{4} c^{2}-\gamma_{0}^{4} V^{2}-w_{y}^{A^{2}}=c^{2} \Longrightarrow w_{y}^{A}=\gamma_{0} V
\end{gathered}
$$

Ergo:

$$
w^{A}=\left[\begin{array}{c}
\gamma_{0}^{2} c \\
\gamma_{0}^{2} V \\
\gamma_{0} V
\end{array}\right]
$$

Very similarly, through equating $u^{C} w^{C}=u^{B} w^{B}, u^{B} v^{B}=u^{C} v^{C}$ and $u^{C} u^{C}=u^{A} u^{A}$, we obtain:

$$
u^{C}=\left[\begin{array}{c}
\gamma_{0}^{2} c \\
-\gamma_{0} V \\
-\gamma_{0}^{2} V
\end{array}\right]
$$

Let us note, that q^{C} can be calculated in the exactly the same way as w^{A}, although with switched signs. Therefore:

$$
q^{C}=\left[\begin{array}{c}
\gamma_{0}^{2} c \\
-\gamma_{0}^{2} V \\
-\gamma_{0} V
\end{array}\right]
$$

Now, using the invariant $q^{A} u^{A}=q^{C} u^{C}$, we can obtain q_{t}^{A} :

$$
\begin{gathered}
q^{A} u^{A}=q^{C} u^{C} \Longrightarrow q_{t}^{A} c=\gamma_{0}^{4} c^{2}-\gamma_{0}^{3} V^{2}-\gamma_{0}^{3} V^{2} \\
q_{t}^{A}=\frac{\gamma_{0}^{3}}{c}\left(\gamma_{0} c^{2}-2 V^{2}\right)
\end{gathered}
$$

If the value of velocity after all the accelerations shall equal V, then clearly q_{t}^{A} must equal $\frac{c}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\gamma_{0} c$. Therefore:

$$
\begin{gathered}
\frac{\gamma_{0}^{3}}{c}\left(\gamma_{0} c^{2}-2 V^{2}\right)=\gamma_{0} c \\
\gamma_{0} c^{2}-2 V^{2}=\frac{c^{2}}{\gamma_{0}^{2}} \\
\gamma_{0} c^{2}-2 V^{2}=c^{2}-V^{2} \\
\gamma_{0}=1+\frac{V^{2}}{c^{2}} \\
1=\left(1+\frac{V^{2}}{c^{2}}\right) \sqrt{1-\frac{V^{2}}{c^{2}}} \\
1=\left(1+2 \frac{V^{2}}{c^{2}}+\frac{V^{4}}{c^{4}}\right)\left(1-\frac{V^{2}}{c^{2}}\right) \\
0=\frac{V^{2}}{c^{2}}-\frac{V^{4}}{c^{4}}-\frac{V^{6}}{c^{6}}
\end{gathered}
$$

We can assume that $V \neq 0$:

$$
0=1-\frac{V^{2}}{c^{2}}-\frac{V^{4}}{c^{4}}
$$

Thats plain old quadratic equation with two solutions:

$$
\frac{V^{2}}{c^{2}}=\frac{-1-\sqrt{5}}{2} \quad \text { or } \quad \frac{V^{2}}{c^{2}}=\frac{-1+\sqrt{5}}{2}
$$

We can safely rule out the first solution, which gives us the final answer:

$$
V=\sqrt{\frac{-1+\sqrt{5}}{2}} c
$$

Note that the number under the square root is the reciprocal of the famous golden ratio, which is nice.

