Physics Cup 2023

Problem 4

Alptürk Eski

Throughout the solution, I will call the Earth frame as rest frame. In the rest frame, the first phase of the motion $(0 \leq t<\tau)$ is simple. On the other hand, for $\tau<t$, in the rest frame, the motion is two-dimensional therefore, equations of motion are not simple. However, in a frame (S_{1}) whose relative velocity respect to the rest frame is given by $\overrightarrow{v_{10}}=v \hat{x}$, where v is the spaceship's speed at $t=\tau$ in the rest frame, the second phase of the motion ($\tau \leq t<2 \tau$) is one dimensional. Because motions during the first and second phases are identical when observed from the rest frame and S_{1}, respectively, except 90° rotation, the final speed of the spaceship in S_{1} is $\overrightarrow{v_{1}}=v \widehat{y}$. Hereafter, S_{1} will be useless and we will need to define a new frame according to the final speed of the spaceship as before. Define S_{2} whose relative velocity respect to S_{1} is $\overrightarrow{v_{21}}=v \hat{y}$. From the same considerations, I introduce the last frame as S_{3} whose relative velocity respect to S_{2} is $\overrightarrow{v_{32}}=-v \hat{x}$. In S_{3} frame, the final velocity of the spaceship is $\overrightarrow{v_{3}}=-v \hat{y}$. Now, the problem is to obtain final velocity of the spaceship in the rest frame using velocity transformation equations throughout S_{3}, S_{2}, S_{1}.

Transformation from S_{3} to S_{2} frame:

$$
v_{S_{2} y}^{f}=-\frac{v}{\gamma} \quad v_{S_{2} x}^{f}=-v \quad \vec{v}_{S_{2}}^{f}=-\frac{v}{\gamma}(\gamma \hat{x}+\hat{y})
$$

Transformation from S_{2} to S_{1} frame:

$$
\begin{gathered}
v_{S_{1} y}^{f}=\frac{v_{S_{2} y}^{f}+v}{1+\frac{v v_{S_{2} y}^{f}}{c^{2}}}=\frac{v-\frac{v}{\gamma}}{1-\frac{v^{2}}{\gamma c^{2}}}=\frac{v(\gamma-1)}{\gamma-\frac{v^{2}}{c^{2}}} \\
v_{S_{1} x}^{f}=\frac{v_{S_{2} x}^{f}}{\gamma\left(1+\frac{v v_{S_{2} y}^{f}}{c^{2}}\right)}=\frac{-v}{\gamma\left(1-\frac{v^{2}}{\gamma c^{2}}\right)}=-\frac{v}{\gamma-\frac{v^{2}}{c^{2}}} \\
\vec{v}_{S_{1}}^{f}=\frac{v}{\gamma-\frac{v^{2}}{c^{2}}}(-\hat{x}+(\gamma-1) \hat{y})
\end{gathered}
$$

Transformation from S_{1} to the rest frame:

$$
\begin{gathered}
v_{f x}=\frac{v_{S_{1} x}^{f}+v}{1+\frac{v v_{S_{1} x}^{f}}{c^{2}}}=\frac{v-\frac{v}{\gamma-\frac{v^{2}}{c^{2}}}}{1-\frac{\frac{v^{2}}{c^{2}}}{\gamma-\frac{v^{2}}{c^{2}}}}=\frac{v\left(\gamma-\frac{v^{2}}{c^{2}}\right)-v}{\gamma-\frac{2 v^{2}}{c^{2}}} \\
v_{f y}=\frac{v_{S_{1} y}^{f}}{\gamma\left(1+\frac{v v_{S_{1} x}^{f}}{c^{2}}\right)}
\end{gathered}
$$

$$
\overrightarrow{v_{f}}=\frac{v\left(\gamma-\frac{v^{2}}{c^{2}}\right)-v}{\gamma-\frac{2 v^{2}}{c^{2}}} \hat{x}+\frac{v(\gamma-1)}{\gamma\left(\gamma-\frac{2 v^{2}}{c^{2}}\right)} \hat{y}
$$

Final speed:

$$
v_{f}^{2}=\left[\frac{v\left(\gamma-\frac{v^{2}}{c^{2}}\right)-v}{\gamma-\frac{2 v^{2}}{c^{2}}}\right]^{2}+\left[\frac{v(\gamma-1)}{\gamma\left(\gamma-\frac{2 v^{2}}{c^{2}}\right)}\right]^{2}
$$

From the problem text, we know this speed equals to v.

$$
v^{2}=\frac{\left[v\left(\gamma-\frac{v^{2}}{c^{2}}\right)-v\right]^{2}+v^{2}\left(1-\frac{1}{\gamma}\right)^{2}}{\left(\gamma-\frac{2 v^{2}}{c^{2}}\right)^{2}}
$$

Arrangement gives:

$$
4 \sqrt{1-\frac{v^{2}}{c^{2}}}=3+\frac{v^{2}}{c^{2}}-3 \frac{v^{4}}{c^{4}}
$$

Solving for v using a computer gives:

$$
v=\sqrt{\frac{\sqrt{5}-1}{2}} c \cong 0.786 c
$$

