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If we are observing an object moving with constant proper acceleration of magnitude g which is initially at rest,
we observe it to obtain some velocity v as proper time τ passes in the rest frame of the object. Since this is simple
(1+1)D accelerated motion, this velocity is in the same direction as the acceleration.
The direction of proper acceleration is in the x direction as observed from the rest frame of the spaceship during
the first interval of duration τ . Let’s call the Earth frame S0. During the first interval of acceleration the spaceship
obtains a velocity v⃗(τ), whose magnitude is v, in the S0 frame.
At t = τ the acceleration changes direction to point in the y direction in the spaceship frame. From the frame S1, in
which the spaceship is at rest in the instant the acceleration changes direction, the motion proceeds analogously to
the motion during the first interval in the S0 frame. Before the acceleration direction changes again the spaceship
attains velocity of magnitude v in S1 but in the y1 direction, the y1 axis of the S1 frame corresponding to the y axis
of the spaceship frame at the end of the first interval when the two systems had zero relative velocity and when we
pick them to coincide. The S1 frame is moving with velocity v with respect to the S0 system in its x0 direction,
the axis along which the motion was taking place during the first interval.
Similarly we pick the S2 frame as the one which moves in the y0 direction with velocity v with respect to S1 and in
which the spaceship is at rest at the end of the second interval of acceleration. The S3 frame shall move in the −x2

direction with speed v with respect to S2 and S4 shall move in the −y3 direction with the same speed with respect
to S3, where we assign to the Si system the axes xi and yi (i = 0, 1, 2, 3, 4) such that in the instant the spaceship
is at rest in Si (at the end of the i-th interval) the spaceship frame and Si coincide.
The velocity of the spaceship at t = τ in the S1 frame is zero by construction as well as at t = 4τ in S4. What
remains is to find the corresponding velocities in S0, or, in other words, to apply the relevant Lorentz boosts which
connect the systems to find how the velocity transforms.
Lorentz boosts can be interpreted as rotations in Minkowski spacetime in which the time component of some generic
position 4-vector r⃗ = (ict, x, y, z) has an added factor of the imaginary unit. Thus a Lorentz boost in the x direction
is represented as a rotation of the 4-vector in the ict-x plane by an imaginary angle α, where the relations between
the relativistic parameters γ and β and α are

cos(α) = γ (1)
sin(α) = iγβ (2)

In matrix form the Lorentz boost in the x direction is then given by (where we ignore the third spacial component
because motion is confined to 2+1 dimensions)

Rx(α) =

cos (α) − sin (α) 0
sin (α) cos (α) 0

0 0 1

 (3)

(where we ignore the third spacial component because motion is confined to 2+1 dimensions). The boost in the y
direction is, analogously, a rotation in the ict-y plane.

Ry(α)

cos (α) 0 − sin (α)
0 1 0

sin (α) 0 cos (α)

 (4)

In order to find the 3-velocity transformations we first introduce the 4-velocity which is defined as

ξ⃗ =
dr⃗

dτ
(5)

and which transforms like any 4-vector. Because dt = γ dτ , it is easy to see that ξ⃗ = γ(ic, vx, vy, vz) (where we will
henceforth drop the third spacial component because it is always zero).
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So, the proper velocity of the spaceship at t = τ in S1 is ξ⃗1(τ) = (ic, 0, 0) and at t = 4τ in S4 is ξ⃗4(4τ) = (ic, 0, 0).
By construction, the boost Rx(α) transforms 4-vectors in S0 to 4-vectors in S1, Rx(−α) is the inverse and α is the
angle of rotation corresponding to a boost of speed v. Similarly, Ry(−α) brings vectors from S2 to S1, Rx(α) from
S3 to S2 and Ry(α) form S4 to S3. Therefore, the 4-velocity as seen from S0 at times t = τ and t = 4τ is

ξ⃗0(τ) = Rx(−α)ξ⃗1(τ) (6)

ξ⃗0(4τ) = Rx(−α)Ry(−α)Rx(α)Ry(α)ξ⃗4(4τ) (7)

Once the matrix multiplication is carried out, one gets

ξ⃗0(τ) =

 cos (α) sin (α) 0
− sin (α) cos (α) 0

0 0 1

ic
0
0

 (8)

ξ⃗0(4τ) =


cos (α)

4 − 2 cos (α)
3
+ 2 cos (α) ... ..,

−
(
cos (α)

3 − 2 cos (α)
2
+ 1

)
sin (α) ... ...

−
(
cos (α)

2 − cos (α)
)
sin (α) ... ...


ic

0
0

 (9)

where we have disregarded the second and third columns of the second matrix because they multiply with zero to
give the relevant vector. Moreover, we can even disregard any matrix elements other than the first element of the
first row in both of the matrices because we are interested in the magnitudes of the corresponding 3-vectors which
are completely "encoded" in the gamma factors, and the time component of the 4-vector is precisely γic. Therefore,
the time components of ξ⃗0(4τ) and ξ⃗0(τ) have to be equal as their corresponding speeds are given to be equal, which
means their gamma factors are as well, so the elements in the first row and column of the above matrices have to
be equal:

⇒ cos(α)
4 − 2 cos(α)

3
+ 2 cos(α) = cos(α) (10)

⇒γ4 − 2 γ3 + 2γ = γ (11)

⇔γ(γ − 1)(γ2 − γ − 1) = 0 (12)

⇒γ ∈

{
0, 1,

1 +
√
5

2
,
1−

√
5

2

}
(13)

where in eq.10 the relation eq.1 was used. Since γ ≥ 1, the first and fourth solution are impossible and γ = 1 is the
trivial solution which corresponds to zero acceleration.

γ = φ =
1 +

√
5

2
(14)

⇒ v = cφ−1/2 (15)
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