Problem 4 - Spaceship

Lukas Schicht
Physics Cup 2023

Contents

1 Task 2
2 Lorentz transformation of 4-vectors 2
3 Solution 3
4 Appendix: Finding τ 4

1 Task

A spaceship takes off from the Earth at $t=0$, and henceforth keeps the modulus of its proper acceleration equal to g; here and in what follows, t denotes the spaceship's proper time. Thus, the astronauts on board will always feel a constant free fall acceleration g. However, the direction of the proper acceleration is changed four times at equal intervals, by turning the engines counterclockwise by 90°. So, the proper acceleration is:

- parallel to the x -axis when $0 \leq t<\tau$
- parallel to the y-axis when $\tau \leq t<2 \tau$
- antiparallel to the x -axis when $2 \tau \leq t<3 \tau$
- antiparallel to the y-axis when $3 \tau \leq t<4 \tau$

It turns out that the spaceship's speed relative to the Earth takes exactly the same value v at $t=\tau$ and $t=4 \tau$. Find this value $v!$

2 Lorentz transformation of 4-vectors

Let a be a contravariant 4 -vector in the inertial system S, for example:

- 4-position: $X=(c t, x, y, z)^{T}$
- 4-velocity: $V=\gamma \cdot \frac{\mathrm{d} X}{\mathrm{~d} t}=\gamma \cdot(c, \vec{v})^{T}$, where $\vec{v}=(\dot{x}, \dot{y}, \dot{z})$ is the velocity observed in S and $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
- 4-acceleration: $B=\gamma \cdot \frac{\mathrm{d} V}{\mathrm{~d} t}=\gamma \cdot \frac{\mathrm{d}}{\mathrm{d} t}(\gamma c, \gamma \vec{v})^{T}$

In the inertial system S^{\prime} moving relative to S with velocity u in the x-direction

$$
a^{\prime}=\Lambda \cdot a
$$

where

$$
\Lambda=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Here, $\beta=\frac{u}{c}$ and $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$. Furthermore, $a=\Lambda^{-1} \cdot a^{\prime}$, where

$$
\Lambda^{-1}=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3 Solution

Let the velocity of the spaceship relative to the Earth at time τ be v. In an inertial frame S_{1} moving relative to the Earth with velocity v parallel to the x -axis, the spaceship appears to accelerate from rest in the y-direction from then on. To an observer in S_{1}, the process looks the same as it did to an observer on Earth when the spaceship accelerated in the x-direction. At the time 2τ, the spaceship thus reaches the velocity v in S_{1}. Let further S_{2} be the inertial frame moving in the y-direction relative to S_{1} with velocity v and S_{3} be the inertial frame traveling antiparallel to the x-axis relative to S_{2} with velocity v. In S_{3} the 4 -velocity of the spaceship at time 4τ is

$$
V_{S_{3}}=c \gamma \cdot(1,0,-\beta, 0)^{T}
$$

Here, $\beta=\frac{v}{c}$ and $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$. The 4 -velocity measured by an observer on Earth can be found by the Lorentz transformations from S_{3} to S_{2}, S_{2} to S_{1} and S_{1} to the Earth's inertial frame:
$V_{\text {Earth }}=\left(\begin{array}{cccc}\gamma & \beta \gamma & 0 & 0 \\ \beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{cccc}\gamma & 0 & \beta \gamma & 0 \\ 0 & 1 & 0 & 0 \\ \beta \gamma & 0 & \gamma & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{cccc}\gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \cdot V_{S_{3}}=c \gamma \cdot\left(\begin{array}{c}\gamma^{3}-2 \beta^{2} \gamma^{2} \\ \beta \gamma^{3}-\beta^{3} \gamma^{2}-\beta \gamma^{2} \\ \beta \gamma^{2}-\beta \gamma \\ 0\end{array}\right)$
If the spaceship is moving with velocity v relative to the Earth at this time, then the first component of the 4 -velocity is $c \gamma$, i.e. $\gamma^{3}-2 \beta^{2} \gamma^{2}=1$. Hence,

$$
\begin{aligned}
1-\beta^{2} & =\gamma^{-2}=\gamma-2 \beta^{2} \\
\frac{1}{\sqrt{1-\beta^{2}}} & =\gamma=1+\beta^{2} \\
\frac{1}{1-\beta^{2}} & =1+2 \beta^{2}+\beta^{4} \\
1 & =1+2 \beta^{2}+\beta^{4}-\beta^{2}-2 \beta^{4}-\beta^{6} \\
0 & =\beta^{2} \cdot\left(1-\beta^{2}-\beta^{4}\right)
\end{aligned}
$$

We are looking for a $\beta>0$ that satisfies the upper equation:

$$
\begin{aligned}
\beta^{2} & =-\frac{1}{2}+\sqrt{\frac{1}{4}+1} \\
\beta & =\sqrt{\sqrt{1.25}-0.5}
\end{aligned}
$$

Thus, the spaceship moves with velocity $v=\sqrt{\sqrt{1.25}-0.5} \cdot c \approx 0.78615 c$ relative to the Earth at times τ and 4τ.

4 Appendix: Finding τ

We consider the time period $0 \leq t<\tau$. Let t_{E} be the time that has passed on earth. The 4-acceleration in the spaceship's inertial frame is $B^{\prime}=(0, g, 0,0)^{T}$, so for an observer on Earth

$$
B=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot B^{\prime}=\left(\begin{array}{c}
\beta \gamma g \\
\gamma g \\
0 \\
0
\end{array}\right)
$$

Thus, we obtain in particular

$$
g=\frac{\mathrm{d}}{\mathrm{~d} t_{\mathrm{E}}}(\gamma v)
$$

Integration and subsequent transformations lead to

$$
v\left(t_{\mathrm{E}}\right)=\frac{g t_{\mathrm{E}}}{\sqrt{1+\left(\frac{g t_{\mathrm{E}}}{c}\right)^{2}}}
$$

taking into account the initial condition $v(0)=0$. In the spaceship, time

$$
t=\int_{0}^{t_{\mathrm{E}}} \frac{\mathrm{~d} t^{\prime}}{\gamma\left(t^{\prime}\right)}=\int_{0}^{t_{\mathrm{E}}} \sqrt{1-\frac{v\left(t^{\prime}\right)^{2}}{c^{2}}} \mathrm{~d} t^{\prime}=\int_{0}^{t_{\mathrm{E}}} \frac{\mathrm{~d} t^{\prime}}{\sqrt{1+\left(\frac{g t^{\prime}}{c}\right)^{2}}}=\frac{c}{g} \cdot \operatorname{arsinh}\left(\frac{g t_{\mathrm{E}}}{c}\right)
$$

has passed. Converting to t_{E} yields

$$
t_{\mathrm{E}}=\frac{c}{g} \cdot \sinh \left(\frac{g t}{c}\right)
$$

and inserting gives

$$
v(t)=\frac{c \cdot \sinh \left(\frac{g t}{c}\right)}{\sqrt{1+\sinh ^{2}\left(\frac{g t}{c}\right)}}=c \cdot \tanh \left(\frac{g t}{c}\right)
$$

Therefore,

$$
v(\tau)=c \cdot \tanh \left(\frac{g \tau}{c}\right)
$$

Thus, we can specify the time that has elapsed in the spaceship when the direction of acceleration changes:

$$
\tau=\frac{c}{g} \cdot \operatorname{artanh}\left(\frac{v(\tau)}{c}\right)=\frac{c}{g} \cdot \operatorname{artanh}(0.78615)=1.06127 \cdot \frac{c}{g}
$$

This gives $\tau=375.37$ days using the well-known constants.

