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1 Introduction

First, I will introduce the general idea of the solution and thereafter give the respec-
tive solution with the algebraic manipulation left out. This is done as this particular
solution (for an equation) is algebraically pretty heavy (i.e. not an ideal or a beautiful
solution) but as there are some niceties in that manipulation (and for double-checking)
I decided to write it out in the extra chapters. Similarly, out of my own interest, the
respective proper time, τ, for which this situation is possible is calculated as well.

As we will soon see, this solution heavily uses relativistic velocity addition. Hence,
to make sure everything checks out, these are proven using Lorentz transformation
in the extra chapters.

2 Layout of the idea

We start working in the frame of reference of the earth, S. We define (for the rest of
the problem) the positive x-axis to point in the direction of the spaceship’s proper
acceleration during 0 ≤ t < τ and positive y-axis to point in the direction of the
spaceship’s proper acceleration during τ ≤ t < 2τ.

Now, in the frame of S, the spaceship starts from rest and accelerates, reaching
the speed v. Now, we can go to the inertial frame of reference, S ′, for which the
spaceship is again momentarily at rest. I.e. the velocity of S ′ with respect to S is
(u′

x, u
′
y, ) = (v, 0) However, now the situation is identical (but the direction of proper

acceleration is different), so the spaceship reaches the velocity (v′x, v
′
y) = (0, v) in the

frame of S ′.

We can repeat the same process of changing to the new reference frame of the space-
ship after a certain burst of acceleration until we are at t = 4τ. At this point we
have the spaceship moving at (v′′′x , v

′′′
y ) = (0,−v) in the reference frame S ′′′ moving

at (u′′′
x , u

′′′
y ) = (−v, 0) with respect to S ′′ moving at (u′′

x, u
′′
y) = (0, v) with respect to S ′.

Having this in mind, we can just repeatedly apply the velocity addition formulae to
find the velocity of the spaceship in S ′′ → S ′ → S. Finally, we can equate the respec-
tive speed with v and solve for v.

The relativistic velocity formulae work as follows. If a frame K ′ moves with (vi, vj) =
(v, 0) with respect to K and a particle has a velocity of (u′

i, u
′
j) (note that axes i and j

2



are perpendicular), then the velocity of the particle in K, (ui, uj) is found as follows:

ui =
u′
i + v

1 + u′
iv/c

2

uj =
u′
j

γ(1 + u′
iv/c

2)
,

where

γ =
1√

1− v2/c2
.

3 Solution

Let
β =

v

c
> 0.

We note that for each switch in frame we do, the Lorentz factor stays the same as
the relative speed between the frames is always v. Hence

γ =
1√

1− β2
.

Now, the velocity of the spaceship in S ′′′ is (v′′′x , v
′′′
y ) = (0,−v) and hence the velocity

in S ′′, (v′′x, v
′′
y) is (u⃗

′′′ in S ′′ is parallel to the x-axis so i = x and j = y):

v′′x = −v

v′′y =
−v

γ
.

The velocity of the spaceship in S ′, (v′x, v
′
y) is (u⃗′′ in S ′ is parallel to the y-axis so

i = y and j = x):

v′x =
−v

γ
(
1 + β2

γ

)
v′y =

− v
γ
+ v

1− β2

γ

.
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The velocity of the spaceship in S, (vx, vy) is (u⃗
′ in S is parallel to the x-axis so i = x

and j = y):

vx =

−v

γ
(
1−β2

γ

) + v

1− β2

γ
(
1−β2

γ

)

vy =

− v
γ
+v

1−β2

γ

γ

(
1− β2

γ
(
1−β2

γ

)
) .

Dividing both sides by v and simplifying:

vx
v

=
γ − β2 − 1

γ − 2β2

vy
v

=
γ − 1

γ2 − 2γβ2

We want to find the v for which the speed of the spaceship in S is the same at t = τ
and t = 4τ. Hence, we get the equation:

v2x + v2y = v2

=⇒
(vx
v

)2

+
(vx
v

)2

= 1

⇐⇒
(
γ − β2 − 1

γ − 2β2

)2

+

(
γ − 1

γ2 − 2γβ2

)2

= 1.

Plugging in γ = 1/
√

1− β2 and solving for β (remembering that β > 0), we get that

β =

√√
5− 1

2

⇐⇒ v = c

√√
5− 1

2
.

As a side note, the Lorentz factor is actually equal to the golden ratio (see 4.1)
γ = φ = (1 +

√
5)/2 and thus v = c

√
1− 1/φ2.
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4 Extra stuff

4.1 Solving the equation

We have the equation (
γ − β2 − 1

γ − 2β2

)2

+

(
γ − 1

γ2 − 2γβ2

)2

= 1

to solve for β. It is actually easier to solve for γ first and then β as we will see soon.
Hence, we will use the following relation:

γ =
1√

1− β2

=⇒ β2 = 1− 1

γ2
.

Now, back to the equation at hand. First we will rewrite it a little:(
γ − β2 − 1

γ − 2β2

)2

+

(
γ − 1

γ2 − 2γβ2

)2

= 1

=⇒ (γ − β2 − 1)2 +

(
γ − 1

γ

)2

= (γ − 2β2)2

⇐⇒ (γ − 2β2)2 − (γ − β2 − 1)2 =

(
γ − 1

γ

)2

⇐⇒ (1− β2)(2γ − 3β2 − 1) =

(
γ − 1

γ

)2

.

Now, when we plug in our expression for β with respect to γ, we get that

1

γ2

(
2γ − 3

(
1− 1

γ2

)
− 1

)
=

(
γ − 1

γ

)2

=⇒ 2γ +
3

γ2
− 4 = γ2 − 2γ + 1

⇐⇒ γ2 − 4γ + 5− 3

γ2
= 0

=⇒ γ4 − 4γ3 + 5γ2 − 3 = 0

⇐⇒ (γ2 − γ − 1)(γ2 − 3x+ 3) = 0.
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The second quadratic equation has a negative discriminant so it has no real roots.
However, the first quadratic equation has the roots:

1 +
√
5

2
and

1−
√
5

2
.

The second root is negative which is non-physical for the Lorentz factor so:

γ =
1 +

√
5

2
= φ.

I.e. the Lorentz factor is equal to the golden ratio.

4.2 Calculation of τ

We can find τ from v as we know that with proper acceleration g the spaceship
achieves speed v in proper time τ. We note that during the initial acceleration the
acceleration and velocity are parallel.

Let the speed of the spaceship with respect to proper time t be v(t). There always
exists a frame K for which the spaceship is instantaneously at rest. In this frame after
dt the spaceship reaches a speed of g dt. Now, using the velocity addition formula
(both the acceleration and velocity of the spaceship are along i):

v(t+ dt) =
v(t) + g dt

1 + v(t)g dt/c2
.

The right hand sides simplifies to (neglecting O(dt2) terms):

v(t) + g dt

1 + v(t)g dt/c2
∼= v(t) + g

(
1− v(t)2

c2

)
dt.

Thus we get the separable differential equation:

dv = g

(
1− v2

c2

)
dt

=⇒ dv

1− v2/c2
= g dt.
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Thus: ∫ v

0

dv

1− v2/c2
=

∫ τ

0

g dt.

⇐⇒ carctanh
(v
c

)
= gτ

⇐⇒ τ =
c

g
arctanh

(v
c

)
=

c

g
arctanh

(√
1− 1

φ2

)
≈ 1,06c

g
.

4.3 Proof of velocity addition formulae

Let S ′ be a frame moving along the i-axis with a velocity of v with respect to the
frame S. A particle has the velocity (u′

i, u
′
j) in S ′. I.e. we know that

q′i
t′

= u′
i

q′j
t′

= u′
j.

Here, qk is displacement along axis k.

We can use Lorentz transformations to find qi, qj, and t,

qi = γ(q′i + vt′)

qj = q′j

t = γ

(
t′ +

vq′i
c2

)
,

where γ is the Lorentz factor γ = 1/
√

1− v2/c2.
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Now,

ui =
qi
t

=
γ(q′i + vt′)

γ(t′ + vq′i/c
2)

=
q′i + vt′

t′ + vq′i/c
2

=
q′i/t

′ + v

1 + (q′i/t
′)v/c2

=
u′
i + v

1 + u′
iv/c

2
,

and

uj =
qj
t

=
q′j

γ(t′ + vq′i/c
2)

=
q′j/t

′

γ(1 + (q′i/t
′)v/c2)

=
u′
j

γ(1 + u′
iv/c

2)
.
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