we use $c=1$
We use frames $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, and D where the spaceship is instantaneously at rest at O , $\tau, 2 \tau, 3 \tau$, and 4τ, respectively, and the 4 -velocities of these frames $v_{0}^{\alpha}, v_{A}^{\alpha}, v_{3}^{\alpha}, v_{6}^{\alpha}, v_{1}^{\alpha}$ We use Einstein's convention for dot products in Minkowski space so that $u_{\alpha} w^{\alpha} \quad$ gives the Lorentz 4-invariant. We omit the z-component. Below is a table for the 4 -velocity components in different frames:

$$
\begin{aligned}
& \begin{array}{lll}
\text { FRAME: } & 0 & A \\
v_{0}^{2} & v_{0}^{0}=(1,0,0) & v_{0}^{A}(\gamma,-\gamma v, 0) \\
v_{0}^{B} & B(a, b, c) & =\left(\gamma^{2}-\gamma \gamma^{2},-\gamma^{2}\right)
\end{array} \\
& v_{A}^{\alpha} \quad v_{A}^{0}=(\gamma, \gamma 0,0) \quad v_{A}^{A}=(1,0,0) \quad v_{A}^{B}=(\gamma, 0,-\gamma v) \\
& \text { jj } \quad v_{B}^{\alpha} \quad v_{B}^{0}=\left(\gamma^{2}, \gamma^{2} J, \gamma \sigma\right) \quad v_{B}^{A}=(\gamma, 0, \gamma v) \quad v_{B}^{B}=(1,0,0) \\
& -\frac{1}{5}\left(v_{0}^{0 \alpha} v_{A \alpha}^{b y}=-\gamma=v_{0}^{0} \alpha_{0}^{0} \sigma_{\alpha \alpha}^{B}=-a \gamma-\gamma v c \Rightarrow 1=a+v c\right. \\
& v_{0}^{A} \alpha v_{B \alpha}^{A}=-\gamma^{2}=v_{0}^{B \alpha} v_{B \alpha}^{B}=-a \Rightarrow a=\gamma^{2} \Rightarrow c=\frac{1-\gamma^{2}}{v}=\frac{-v}{1-v^{2}}=-\gamma^{2} v \\
& -1=v_{0}^{3 \alpha}{v_{0}^{B} \alpha}^{B}=-a^{2}+b^{2}+c^{2}=\delta^{2}+\gamma^{4} v^{2}-\gamma^{4}=b^{2}-\gamma^{2} \Rightarrow b^{2}=\gamma^{2}-1=v^{2} \gamma^{2} \Rightarrow b=-\gamma^{v}
\end{aligned}
$$

$$
\begin{aligned}
& v_{0}^{B \alpha} 5_{0 \alpha}^{B}=-\gamma^{4}+2 \gamma^{3} \sigma^{2}=v_{0}^{0} \alpha v_{D \alpha}^{B}=\gamma \Rightarrow \gamma=\gamma^{3}\left(\gamma-2 v^{2}\right) \Rightarrow 1-v^{2}=\gamma-2 s^{2} \Rightarrow \\
& \Rightarrow \gamma=1+v^{2} \Rightarrow 1=\left(1-v^{2}\right)\left(1+v^{2}\right)^{2}=\left(1-v^{4}\right)\left(1+v^{2}\right) \stackrel{v^{2}=x}{=}\left(1-x^{2}\right)(1+x)=1+x-x^{2}-x^{3} \Rightarrow \\
& \Rightarrow x^{2}+x-1=0(x<1) x=\frac{\sqrt{5}-1}{2} \Rightarrow v=\sqrt{\frac{\sqrt{5-1}}{2}} \simeq 0.786
\end{aligned}
$$

