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1 Task

There are three identical point light sources emitting mutually coherent light homogeneously in all
directions. The figure below shows the positions of the local light intensity maxima in the plane defined
by the three light sources. These positions are not perfectly accurate because they are calculated on
the assumption that the light intensity from a single source does not depend on the distance from it.
Reconstruct the positions of the light sources using GeoGebra classic; you can use all its construction
tools except the ones which require inputting numerical values or formulas.
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2 Interference of two circular waves

First we consider the interference of the light waves emanating from two such identical light sources
at points A and B. The phases with which the light waves are emitted at a certain time differ by α.
Their direction of polarization is the same. Assuming that the intensity of a wave does not depend on
the distance from the source, the electric field at a certain point P at a certain time is given by

E = A · ei(k·|PA|−ωt) +A · ei(k·|PB|−ωt+α).

Here |PA| and |PB| are the distances of the point to the two light sources. The reason that A, k and
ω are the same is that the two light sources are identical. The phase difference between the two waves
at point P is ∆φ = k (|PB| − |PA|) + α. Therefore,

E = A · ei(k·|PA|−ωt) ·
(
1 + ei∆φ

)
.

The intensity I ∝ |E|2 = EE, where E is the complex conjugate of E. It follows that

I ∝ 1 + cos∆φ.

I becomes maximal if ∆φ = 2πn, where n ∈ Z. The set of points

Hn =

{
P | |PB| − |PA| = 2πn− α

k

}
,

where this is satisfied, creates, for a fixed n, a branch of a hyperbola whose foci are A and B. Its semi
major axis is

∣∣2πn−α
2k

∣∣ and its linear eccentricity equals |AB|
2 . n cannot take on any value, but∣∣∣∣2πn− α

k

∣∣∣∣ ≤ |AB|

must apply. This follows directly from the triangle inequality |PB| ≤ |PA| + |AB| and |PA| ≤
|PB|+ |AB|. If there is an n ∈ Z such that |AB| = 2πn−α

k (1) or |AB| = −2πn−α
k (2), then constructive

interference also occurs on the the ray starting at A and heading away from B (1) or on the the ray
starting at B and heading away from A (2). If α = 0, the intensity becomes maximal for n = 0 on
the perpendicular bisector g of the line segment AB. In this case H−n is the mirror image of Hn in g.
The distance of the vertex of Hn to g is π|n|

k (semi major axis).

3 Interference of three circular waves

Now a third light source is added at point C. We consider the three sets of hyperbolic branches on
which the intensity would become maximum if there were only two light sources.

M1 =

{{
P | |PB| − |PA| = 2πn1 − α1

k

}
| n1 ∈ Z and

∣∣∣∣2πn1 − α1

k

∣∣∣∣ ≤ |AB|
}

M2 =

{{
P | |PC| − |PB| = 2πn2 − α2

k

}
| n2 ∈ Z and

∣∣∣∣2πn2 − α2

k

∣∣∣∣ ≤ |BC|
}

and

M3 =

{{
P | |PC| − |PA| = 2πn3 − (α1 + α2)

k

}
| n3 ∈ Z and

∣∣∣∣2πn3 − (α1 + α2)

k

∣∣∣∣ ≤ |AC|
}

α1, α2 and α1 + α2 are the phase differences between the light sources at A and B, B and C and A
and C respectively. At any intersection point Q ∈ Hn1 ∈ M1 and Q ∈ Hn2 ∈ M2, the phase difference
between the two waves emanating from A and B is a multiple of 2π: φB − φA = 2πn1. Similarly:
φC−φB = 2πn2. Therefore, φC−φA = 2π (n1 + n2). Thus there is also a curve from M3 that contains
Q. Here, n3 = n1 + n2. It follows: There is no point at which only two hyperbolas/ straight lines/
rays from M1, M2 and M3 cross. At all such points of intersection, the amplitude of the electric field
|E| = 3A and thus also the intensity I takes on the maximum possible value. Furthermore, there are
no other positions where the intensity has a local maximum (see 5.3 for proof).
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4 Determining the positions of the light sources

Looking more closely at the intensity maxima, we find three straight lines running through several
points.

Furthermore, we can find hyperbolas that pass through some intensity maxima. For this we use the
GeoGebra function “Conic through 5 Points”. The resulting sets of curves M1, M2 and M3 are clearly
recognisable (see 5.1). The straight lines are the perpendicular bisectors of the line segments between
the points at which the light sources are located. These therefore emit the light waves in phase
(α1 = α2 = 0).

We know that the light sources are located at the focal points of the hyperbolas. To find them, we
draw for i = 1, 2, 3 each the axis of symmetry of the hyperbolic branches Hn ∈ Mi (n ̸= 0), which is
perpendicular to the corresponding straight line H0 ∈ Mi. The algorithm to do this can be found in
the appendix (5.2). The resulting points of intersection represent the focal points. They are (−6,−2)
(G), (−0.041520, 3.338213) (H) and (1.497167,−8.617589) (I).

Now we can create another hyperbola that has the focal points H and I and passes through the three
remaining free points (see 5.1, bottom figure). In fact, three curves from M1, M2 and M3 intersect in
each intensity maximum.
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5 Appendix

5.1 Three sets of hyperbolic curves
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5.2 Constructions in GeoGebra to find the symmetry axis

1. Choose a random point A on a hyperbolic branch from M1:

2. Draw a straight line through this point which is parallel to H0 ∈ M1.

5



3. This straight line intersects the hyperbolic branch at point B. Now plot the perpendicular bisector
of the line segment AB. This is the symmetry axis we are looking for.

4. Repeat this for i = 2 and i = 3. We contain three straight lines that intersect at the sought positions
of the light sources:
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5.3 The reason why there are no further local maxima

In the following it will be shown that the intensity only has local maxima at the points where it takes
on the maximum possible value.

The magnitude of the electric field at a point P

|E| ∝ |1 + ei∆φ1 + ei∆φ2 |,

where ∆φ1 = φB−φA and ∆φ2 = φC−φA are the phase differences between the two waves emanating
from A and B and A and C respectively. We consider the two hyperbolic branches passing through P
on which ∆φ1 = const. or ∆φ2 = const. holds. Assuming P is a local maximum, |E| should decrease
for small displacements along each of these hyperbolas, which corresponds to small changes in ∆φ1,
where ∆φ2 = const. and vice versa. This is the case if

1 + ei∆φ1 + ei∆φ2 = k1 · ei∆φ1 ,

where k1 > 1, as can be understood with the help of the following figure.

Similarly,

1 + ei∆φ1 + ei∆φ2 = k2 · ei∆φ2 ,

where k2 > 1. From k1 · ei∆φ1 = k2 · ei∆φ2 it follows that ∆φ1 = ∆φ2 + 2πn, where n ∈ Z (and
k1 = k2). Then from 1 = (k1 − 2) ·ei∆φ1 we obtain ∆φ1 = 2πm, where m ∈ Z (as well as k1 = k2 = 3).
Therefore, if there is a local maximum of intensity at point P , then the three waves emanating from
the light sources interfere having the same phase, so that I takes on the largest possible value.
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